SERVICE MANUAL

Common Rail System for
The MITSUBISHI FUSO FIGHTER 6M60 Engine

OPERATION

April, 2004
TABLE OF CONTENTS

1. GENERAL DESCRIPTION ... 1
 1-1. Outline .. 1

2. PRODUCT APPLICATION LIST .. 2
 2-1. Vehicle Specifications ... 2
 2-2. Component Part Numbers ... 2

3. GENERAL DESCRIPTION OF MAIN NEW FEATURES 3
 3-1. Common Rail Specifications and Engine Elements 3
 3-2. System Configuration ... 3

4. MAIN FUNCTIONAL PARTS .. 4
 4-1. Changes to the Main Functional Parts 4
 4-2. Supply Pump .. 4
 4-3. Rail ... 5
 4-4. Injector .. 7
 4-5. Sensor Additions and Changes ... 9

5. CONTROL OPERATION CHANGES ... 11
 5-1. Idle-Up .. 11

6. ECU RELATED ... 12
 6-1. External Wiring Diagram .. 12
 6-2. Terminal Layout .. 13
 6-3. Terminal Symbol Explanation ... 13

7. DIAGNOSTIC TROUBLE CODES (DTC) 16
 7-1. DIAGNOSTIC TROUBLE CODES LIST 16
1. GENERAL DESCRIPTION

1-1. Outline

- This manual describes the common rail system installed in the 6M60 engine of the Mitsubishi Fuso Fighter. The most significant difference to the conventional common rail system is that this system employs a compact and lightweight HP4 supply pump, and a G2 injector with better response. For more details on the common rail system, refer to service manual No. 00400041 "Common Rail System for HINO J05D/J08E Type Engine", issued in October 2003.
2. PRODUCT APPLICATION LIST

2-1. Vehicle Specifications

<table>
<thead>
<tr>
<th>Vehicle Name</th>
<th>Engine Model</th>
<th>Engine Displacement</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi Fuso Fighter</td>
<td>6M60</td>
<td>7,545 cc</td>
<td></td>
</tr>
</tbody>
</table>

2-2. Component Part Numbers

<table>
<thead>
<tr>
<th>Part Name</th>
<th>DENSO P/N</th>
<th>Mitsubishi P/N</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injector</td>
<td>095000-5450</td>
<td>ME302143</td>
<td></td>
</tr>
<tr>
<td>Rail</td>
<td>095440-0570</td>
<td>ME302292</td>
<td></td>
</tr>
<tr>
<td>Flow Damper</td>
<td></td>
<td>ME743861</td>
<td>Rail Component Parts</td>
</tr>
<tr>
<td>Pressure Limiter</td>
<td></td>
<td>ME743862</td>
<td></td>
</tr>
<tr>
<td>Pc sensor</td>
<td></td>
<td>ME743864</td>
<td></td>
</tr>
<tr>
<td>Supply Pump</td>
<td>294050-0050</td>
<td>ME302145</td>
<td>12V Specification</td>
</tr>
<tr>
<td>ECU</td>
<td>275800-3401</td>
<td>ME302751</td>
<td>6M60T1</td>
</tr>
<tr>
<td></td>
<td>275800-3411</td>
<td>ME302752</td>
<td>6M60T2</td>
</tr>
<tr>
<td></td>
<td>275800-3451</td>
<td>ME302986</td>
<td>6M60T1 (Allison AT)</td>
</tr>
<tr>
<td>Boost Pressure Sensor</td>
<td>079800-5580</td>
<td>MK369080</td>
<td></td>
</tr>
<tr>
<td>TDC (MRE) Sensor</td>
<td>949979-1420</td>
<td>ME301026</td>
<td></td>
</tr>
<tr>
<td>NE (MPU) Sensor</td>
<td>029600-0570</td>
<td>MC885578</td>
<td></td>
</tr>
<tr>
<td>Intake Air Temperature Sensor</td>
<td>071500-2571</td>
<td>ME352426</td>
<td></td>
</tr>
<tr>
<td>Fuel Temperature Sensor</td>
<td>179730-0030</td>
<td>MC885579</td>
<td></td>
</tr>
<tr>
<td>Accelerator Position Sensor</td>
<td>198300-7030</td>
<td>ME162376</td>
<td></td>
</tr>
</tbody>
</table>
3. GENERAL DESCRIPTION OF MAIN NEW FEATURES

3-1. Common Rail Specifications and Engine Elements

<table>
<thead>
<tr>
<th>Common Rail Specifications</th>
<th>FK6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Elements</td>
<td>HP-4 + G2</td>
</tr>
<tr>
<td>Pressure Used</td>
<td>170MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Elements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>L6, TI, 4 valves.</td>
</tr>
<tr>
<td>Engine Displacement</td>
<td>7.5L</td>
</tr>
<tr>
<td>Output</td>
<td>199kW/2700rpm</td>
</tr>
<tr>
<td>Torque</td>
<td>785N•m/1400rpm</td>
</tr>
</tbody>
</table>

3-2. System Configuration

A. Overall System
<table>
<thead>
<tr>
<th>Date</th>
<th>Revision Contents</th>
</tr>
</thead>
</table>
| 2007. 09 | • SCV: Explanation of compact SCV added to "Suction Control Valve (SCV)". (Operation: Refer to page 1-30.)
• "Repair" section added. |
Table of Contents

Operation Section

1. **GENERAL DESCRIPTION**
 1.1 Changes In Environment Surrounding The Diesel Engine
 1.2 Demands On Fuel Injection System
 1.3 Types Of And Transitions In ECD (ELECTRONICALLY CONTROLLED DIESEL) Systems
 1.4 Common Rail System Characteristics
 1.5 Common Rail System And Supply Pump Transitions
 1.6 Injector Transitions
 1.7 Common Rail System Configuration

2. **COMMON RAIL SYSTEM OUTLINE**
 2.1 Layout of Main Components

3. **SUPPLY PUMP DESCRIPTION**
 3.1 HP0 Type
 3.2 HP2 Type
 3.3 HP3 Type
 3.4 HP4 Type

4. **RAIL DESCRIPTION**
 4.1 Rail Functions and Composition
 4.2 Component Part Construction and Operation

5. **INJECTOR DESCRIPTION**
 5.1 General Description
 5.2 Injector Construction and Features
 5.3 Injector Operation
 5.4 Injector Actuation Circuit
 5.5 Other Injector Component Parts

6. **DESCRIPTION OF CONTROL SYSTEM COMPONENTS**
 6.1 Engine Control System Diagram (Reference)
 6.2 Engine ECU (Electronic Control Unit)
 6.3 EDU (Electronic Driving Unit)
 6.4 Various Sensors

7. **CONTROL SYSTEM**
 7.1 Fuel Injection Control
 7.2 E-EGR System (Electric-Exhaust Gas Recirculation)
 7.3 Electronically Controlled Throttle (Not Made By DENSO)
 7.4 Exhaust Gas Control System
 7.5 DPF System (Diesel Particulate Filter)
 7.6 DPNR SYSTEM (DIESEL PARTICULATE NOx REDUCTION)
8. DIAGNOSIS
 8.1 Outline Of The Diagnostic Function
 8.2 Diagnosis Inspection Using DST-1
 8.3 Diagnosis Inspection Using The MIL (Malfunction Indicator Light)
 8.4 Throttle Body Function Inspection

9. END OF VOLUME MATERIALS
 9.1 Particulate Matter (PM)
 9.2 Common Rail Type Fuel Injection System Development History And The World's Manufacturers
 9.3 Higher Injection Pressure, Optimized Injection Rates, Higher Injection Timing Control Precision, Higher Injection Quantity Control Precision
 9.4 Image Of Combustion Chamber Interior

Repair Section

1. DIESEL ENGINE MALFUNCTIONS AND DIAGNOSTIC METHODS (BASIC KNOWLEDGE)
 1.1 Combustion State and Malfunction Cause
 1.2 Troubleshooting

2. DIAGNOSIS OVERVIEW
 2.1 Diagnostic Work Flow
 2.2 Inquiries
 2.3 Non-Reoccurring Malfunctions

3. DTC READING (FOR TOYOTA VEHICLES)
 3.1 DST-2
 3.2 DTC Check (Code Reading via the DST-2)
 3.3 DTC Memory Erasure (via the DST-2)

4. TROUBLESHOOTING BY SYSTEM
 4.1 Intake System Diagnosis
 4.2 Fuel System Diagnosis
 4.3 Basics of Electrical/Electronic Circuit Checks

5. TROUBLESHOOTING
 5.1 Troubleshooting According to Malfunction Symptom (for TOYOTA Vehicles)
 5.2 Other Malfunction Symptoms

6. DIAGNOSIS CODES (DTC)
 6.1 DTC Chart (Example)
1. GENERAL DESCRIPTION

1.1 Changes In Environment Surrounding The Diesel Engine

Throughout the world, there is a desperate need to improve vehicle fuel economy for the purposes of preventing global warming and reducing exhaust gas emissions that affect human health. Diesel engine vehicles are highly acclaimed in Europe, due to the good fuel economy that diesel fuel offers. On the other hand, the "nitrogen oxides (NOx)" and "particulate matter (PM)" contained in the exhaust gas must be greatly reduced to meet exhaust gas regulations, and technology is being actively developed for the sake of improved fuel economy and reduced exhaust gases.

(1) Demands on Diesel Vehicles

- Reduce exhaust gases (NOx, PM, carbon monoxide (CO), hydrocarbon (HC) and smoke).
- Improve fuel economy.
- Reduce noise.
- Improve power output and driving performance.

(2) Transition of Exhaust Gas Regulations (Example of Large Vehicle Diesel Regulations)

- The EURO IV regulations take effect in Europe from 2005, and the 2004 MY regulations take effect in North America from 2004. Furthermore, the EURO V regulations will take effect in Europe from 2008, and the 2007 MY regulations will take effect in North America from 2007. Through these measures, PM and NOx emissions are being reduced in stages.